12 julio 2011

ENERGÍA NUCLEAR



La energía nuclear es aquella que se libera como resultado de una reacción nuclear. Se puede obtener por el proceso de Fisión Nuclear (división de núcleos atómicos pesados) o bien por Fusión Nuclear (unión de núcleos atómicos muy livianos). En las reacciones nucleares se libera una gran cantidad de energía debido a que parte de la masa de las partículas involucradas en el proceso, se transforma directamente en energía. Lo anterior se puede explicar basándose en la relación Masa-Energía producto de la genialidad del gran físico Albert Einstein.
 
Con relación a la liberación de energía, una reacción nuclear es un millar de veces más energética que una reacción química, por ejemplo la generada por la combustión del combustible fósil del metano.
· Constitución del Atomo y Modelos Atómicos
La descripción básica de la constitución atómica, reconoce la existencia de partículas con carga eléctrica negativa, llamados electrones, los cuales giran en diversas órbitas (niveles de energía) alrededor de un núcleo central con carga eléctrica positiva. El átomo en su conjunto y sin la presencia de perturbaciones externas es eléctricamente neutro.
El núcleo lo componen los protones con carga eléctrica positiva, y los neutrones que no poseen carga eléctrica.
El tamaño de los núcleos atómicos para los diversos elementos están comprendidos entre una cienmilésima y una diezmilésima del tamaño del átomo.
La cantidad de protones y de electrones presentes en cada átomo es la misma. Esta cantidad recibe el nombre de número atómico, y se designa por la letra "Z". A la cantidad total de protones más neutrones presentes en un núcleo atómico se le llama número másico y se designa por la letra "A".
Si designamos por "X" a un elemento químico cualquiera, su número atómico y másico se representa por la siguiente simbología:
ZXA
Por ejemplo, para el Hidrogeno tenemos: 1H1.
Si bien, todas las características anteriores de la constitución atómica, hoy en día son bastante conocidas y aceptadas, a través de la historia han surgido diversos modelos que han intentado dar respuesta sobre la estructura del átomo. Algunos de tales modelos son los siguientes:
· Radiactividad
    1. Radiactividad Natural
En Febrero de 1896, el físico francés Henri Becquerel investigando con cuerpos fluorescentes (entre ellos el Sulfato de Uranio y el Potasio), halló una nueva propiedad de la materia a la que posteriormente Marie Curie llamó "Radiactividad". Se descubre que ciertos elementos tenían la propiedad de emitir radiaciones semejantes a los rayos X en forma espontánea. Tal radiación era penetrante y provenía del cristal de Uranio sobre el cual se investigaba.
Marie y Pierre Curie al proseguir los estudios encontraron fuentes de radiación natural bastante más poderosas que el Uranio original, entre estos el Polonio y el Radio.
La radiactividad del elemento no dependía de la naturaleza física o química de los átomos que lo componen, sino que era una propiedad radicada en el interior mismo del átomo.
Hoy en día se conocen más de 40 elementos radiactivos naturales, que corresponden a los elementos más pesados. Por arriba del número atómico 83, todos los núcleos naturales son radiactivos.
Desintegraciones Alfa, Beta, Gamma.
La radiactividad es un fenómeno que se origina exclusivamente en el núcleo de los átomos radiactivos. La causa que los origina probablemente se debe a la variación en la cantidad de partículas que se encuentran en el núcleo.
Cuando el núcleo atómico es inestable a causa del gran número de protones que posee (ocurre en los elementos más pesados, es decir con Z = 83 o superior), la estabilidad es alcanzada, con frecuencia, emitiendo una partícula alfa, es decir, un núcleo de Helio (2He4) formado por dos protones y dos neutrones.
Cuando la relación de neutrones/protones en un núcleo atómico es elevada, el núcleo se estabiliza emitiendo un neutrón, o bien como ocurre con frecuencia, emitiendo una partícula beta, es decir, un electrón.
Cuando la relación de neutrones/protones es muy pequeña, debe ocurrir una disminución en el número de protones o aumentar el número de neutrones para lograr la estabilidad del núcleo. Esto ocurre con la emisión de un electrón positivo o positrón, o bien absorbiendo el núcleo un electrón orbital.
Los rayos gamma son ondas electromagnéticas de gran energía, muy parecidos a los rayos X, y en ciertas ocasiones se presentan cuando ocurre una desintegración de partículas beta, o bien una emisión de positrones. Por lo tanto, la radiación gamma no posee carga eléctrica y su naturaleza ondulatoria permite describir su energía en relación a su frecuencia de emisión.
b. Radiactividad Artificial
Al bombardear diversos núcleos atómicos con partículas alfa de gran energía, se pueden transformar en un núcleo diferente, por lo tanto, se transforma en un elemento que no existe en la naturaleza. Los esposos Irene Curie y Frédéric Joliot, experimentando con tales procesos descubren la radiactividad artificial, pues se percatan que al bombardear ciertos núcleos con partículas procedentes de fuentes radiactivas estos se vuelven radiactivos. Si la energía de las partículas es adecuada, entonces puede penetrar en el núcleo generando su inestabilidad y por ende, induciendo su desintegración radiactiva.
Desde el descubrimiento de los primeros elementos radiactivos artificiales, el hombre ha logrado en el tiempo obtener una gran cantidad de ellos. Es clave en este proceso la aparición de los llamados aceleradores de partículas y de los reactores nucleares. Estos últimos son fuente importante de neutrones que son utilizados para producir gran variedad de radioisótopos.
· Radiaciones
    1. Radiaciones Ionizantes
Son radiaciones con energía necesaria para arrancar electrones de los átomos. Cuando un átomo queda con un exceso de carga eléctrica, ya sea positiva o negativa, se dice que se ha convertido en un ión (positivo o negativo).
Son radiaciones ionizantes los rayos X, las radiaciones alfa, beta, gamma y la emisión de neutrones.
La radiación cósmica (proveniente del Sol y del espacio interestelar) también es un tipo de radiación ionizante, pues está compuesta por radiaciones electromagnéticas y por partículas con gran cantidad de energía. Es así como, los llamados rayos cósmicos blandos, se componen principalmente de rayos gamma, electrones o positrones, y la radiación cósmica primaria (que llega a las capas más altas de la atmósfera) se compone fundamentalmente de protones. Cuando la radiación cósmica interactúa con la atmósfera de la Tierra, se forman en ella átomos radiactivos (como el Tritio y el Carbono-14) y se producen partículas alfa, neutrones o protones.
Las radiaciones ionizantes pueden provocar reacciones y cambios químicos con el material con el cual interaccionan. Por ejemplo, son capaces de romper los enlaces químicos de las moléculas o generar cambios genéticos en células reproductoras.
b. Radiaciones No Ionizantes
Son aquellas que no son capaces de producir iones al interactuar con los átomos de un material.
Las radiaciones no ionizantes se pueden clasificar en dos grandes grupos: los campos electromagnéticos y las radiaciones ópticas.
Dentro de los campos electromagnéticos se pueden distinguir aquellos generados por las líneas de corriente eléctrica o por campos eléctricos estáticos. Otros ejemplos son las ondas de radiofrecuencia, utilizadas por las emisoras de radio en sus transmisiones, y las microondas utilizadas en electrodomésticos y en el área de las telecomunicaciones.
Entre las radiaciones ópticas se pueden mencionar los rayos láser, los rayos infrarrojos, la luz visible y la radiación ultravioleta. Estas radiaciones pueden provocar calor y ciertos efectos fotoquímicos al actuar sobre el cuerpo humano. 

  • Fisión Nuclear
    Fisión Nuclear
    Es una reacción nuclear que tiene lugar por la rotura de un núcleo pesado al ser bombardeado por neutrones de cierta velocidad. A raíz de esta división el núcleo se separa en dos fragmentos acompañado de una emisión de radiación, liberación de 2 ó 3 nuevos neutrones y de una gran cantidad de energía (200 MeV) que se transforma finalmente en calor.
    Los neutrones que escapan de la fisión, al bajar su energía cinética, se encuentran en condiciones de fisionar otros núcleos pesados, produciendo una Reacción Nuclear en Cadena. Cabe señalar, que los núcleos atómicos utilizados son de Uranio - 235.
    El proceso de la fisión permite el funcionamiento de los Reactores Nucleares que actualmente operan en el mundo.
      
    • Fusión Nuclear
    Fusión Nuclear
    La fusión nuclear ocurre cuando dos núcleos atómicos muy livianos se unen, formando un núcleo atómico más pesado con mayor estabilidad. Estas reacciones liberan energías tan elevadas que en la actualidad se estudian formas adecuadas para mantener la estabilidad y confinamiento de las reacciones.

    La energía necesaria para lograr la unión de los núcleos se puede obtener utilizando energía térmica o bien utilizando aceleradores de partículas. Ambos métodos buscan que la velocidad de las partículas aumente para así vencer las fuerzas de repulsión electrostáticas generadas al momento de la colisión necesaria para la fusión.
    Para obtener núcleos de átomos aislados, es decir, separados de su envoltura de electrones, se utilizan gases sobrecalentados que constituyen el denominado Plasma Físico. Este proceso es propio del Sol y las estrellas, pues se tratan de gigantescas estructuras de mezclas de gases calientes atrapadas por las fuerzas de gravedad estelar.
    El confinamiento de las partículas se logra utilizando un "Confinamiento Magnético", o bien un "Confinamiento Inercial". El Confinamiento Magnético aprovecha el hecho que el plasma está compuesto por partículas (núcleos) con carga eléctrica. Se sabe que si una de estas partículas interactúa con un Campo Magnético su trayectoria y velocidad cambian, quedando atrapadas por dicho Campo. El Confinamiento Inercial permite comprimir el plasma hasta obtener densidades de 200 a 1000 veces mayor que la de sólidos y líquidos. Cuando se logra la compresión deseada se eleva la temperatura del elemento, lo que facilita aún más el proceso de la fusión.
    La fusión nuclear se puede representar por el siguiente esquema y relación de equilibrio:
    2H + 2H 3He + 1n+ 3,2 MeV


    Presentan las siguientes ventajas e inconvenientes:
    Ventajas
    Inconvenientes
    Altísimo poder energético
    Calentamiento del agua de los ríos utilizados
    Contamina muy poco, si no hay accidentes
    Contaminación muy grave, en caso de accidente
    Tecnología muy desarrollada
    Poco vida útil

    Difícil almacenamiento de los residuos

    Tabla comparativa

    Nuclear
    Hidroeléctrica
    Térmica
    Antigüedad
    Desde 1952
    Desde finales del s. XIX
    Desde finales del s. XIX
    Clasificación
    No renovable/ Tradicional
    Renovable/ Tradicional
    Renovable/ Tradicional
    Utilización actual
    8 %
    1%
    90 %
    Coste de producción
    Bajo
    Casi nulo
    Alto